DoporučujemeZaložit web nebo e-shop
aktualizováno: 13.10.2011 16:22:51 

Sluneční Soustava

Haumea‚ Sedna‚ Quaoar...
Loading

 

(136108) Haumea
 
2003EL61art.jpg
Haumea a její měsíce Hiʻiaka a Namaka v představě umělce.
Měsíce se ve skutečnosti nachází v mnohem větší vzdálenosti.
Předběžné označení 2003 EL61
Katalogové číslo 136108
Název Haumea
Objevena
Datum 28. prosince 2004 (Brown)
7. března 2003 (Ortiz)
Místo Palomar (Brown)
Sierra Nevada
(Ortiz)
Objevitel Michael E. Brown et al.
José L. Ortiz
et al.
Elementy dráhy
(
Ekvinokcium J2000,0)
Epocha 2010-01-04  UTC
2455200,5 JD
Velká poloosa 51,526 AU
7 708 000 000 km
Excentricita 0,197 403
Perihel 34,537  AU
5 166 667 716 km
Afel 51,526  AU
7 708 000 000 km
Perioda (oběžná doba) 282,29 roku
103 105 dne
Střední denní pohyb 0,0035°/den
Sklon dráhy k ekliptice 28,22°
Délka vzestupného uzlu 122,08°
Argument šířky perihelu 239,62°
Střední anomálie 203,57°
Průchod perihelem 2132-09-01,56530748  UTC
2500001,065307477210 JD
Rotace tělesa
Perioda rotace 3,9154 h
Severní pól α=?
δ=?
Sklon osy k rovině dráhy  ?°
Fyzikální vlastnosti
Absolutní hvězdná velikost 0,18488
Odhadovaný průměr ≈1960 × 1518 × 996 km (Keck)[1]
(≈1400 km)
1150+250-100

 km (Spitzer)[2]

Albedo 0,7 ± 0,1[1]
Hmotnost (4,006 ± 0,04) × 1021[3] kg
Střední hustota 2,6–3,3[1] g/cm3
Gravitační parametr  ? km3/s2
Zrychlení na povrchu 0,44 m/s2
?g
Úniková rychlost 840 m/s
Teplota <50 K
Spektrální třída  ?

Haumea, oficiální označení (136108) Haumea, je plutoidKuiperově pásu, který dosahuje asi jedné třetiny hmotnosti Pluta a 0,07 % hmotnosti Země. Objeven byl roku 2004 týmem vedeným Michaelem BrownemKalifornského technologického institutu na fotografiích pořízených na observatoři Palomar ve Spojených státech amerických a roku 2005 týmem vedeným José Ortizem na Observatoři Sierra Nevada ve Španělsku. Objev provázely spory o prvenství mezi oběma týmy. Roku 2008 Mezinárodní astronomická unie (IAU) tělesu přiznala status trpasličí planety a pojmenovala ho po havajské bohyni zrození Haumea.

Extrémně protáhlý tvar této trpasličí planety je mezi transneptunickými tělesy (TNO) jedinečný. Ačkoliv její tvar nebyl pozorován přímo, výpočty z její světelné křivky naznačují, že se jedná o elipsoid, jehož nejdelší osa je oproti nejkratší ose dvojnásobná. Astronomové se přesto domnívají, že gravitace tělesa je dostatečná na to, aby spočinulo v hydrostatické rovnováze, takže splňuje podmínky definice trpasličí planety. Prodloužený tvar, vysoká rychlost rotace, vysoká hustota i velké albedo (způsobené přítomností krystalického vodního ledu na povrchu) jsou zřejmě výsledkem mohutné kolize, po níž navíc vznikla celá skupina příbuzných těles, zahrnující také dva známé měsíce Haumey a několik dalších TNO.

 

 

 

 

Klasifikace

Haumea je plutoid,[4] což je označení pro trpasličí planety obíhající za drahou Neptunu. Dle definice trpasličí planety je takové těleso dostatečně hmotné na to, aby vlivem vlastní gravitace získalo kulový tvar, ovšem nevyčistilo své sousedství od jiných, podobných objektů. Ačkoliv Haumea zdaleka nepřipomíná kouli, její elipsoidní tvar je pravděpodobně výsledkem rychlé rotace a nikoliv nedostatečné gravitace.[5][6] Haumea byla také původně zařazena mezi tzv. „klasické objekty Kuiperova pásu“, též označované jako kubewana, které jsou nejpočetnější skupinou známých transneptunických těles.[7] Trajektorie, po níž Haumea obíhá kolem Slunce, však naznačuje, že rezonuje s Neptunem v poměru 12:7, což ji řadí mezi tzv. rezonanční transneptunická tělesa.[8][9]

 Jméno

Kalifornský tým původně těleso nazýval familiárně „Santa“ kvůli době objevu 28. prosince 2004, tj. krátce po Vánocích.[10] 29. července 2005 dostalo oficiální předběžné označení 2003 EL61, které se však vztahovalo k datu španělského objevového snímku, pořízeného roku 2003. 7. září 2005 pak těleso obdrželo katalogové číslo a bylo zařazeno do katalogu Minor Planet Center jako (136108) 2003 EL61. Pravidla Komise pro nomenklaturu malých těles stanovují, že klasická tělesa Kuiperova pásu mají být pojmenovávána podle mytologických bytostí souvisejících se stvořením,[11] a v souladu s touto konvencí David Rabinowitz z kalifornského týmu v září 2006 navrhl pro těleso i jeho měsíce jména z havajské mytologie s odůvodněním, že tak bude vzdána pocta místu, kde byly tyto měsíce objeveny.[12][5]

Bohyně Haumea je patronkou ostrova Havaj, na němž leží Observatoř Mauna Kea. Navíc bývá ztotožňována s Pāpā, bohyní země[13] reprezentující element kamene, což současně podporuje vhodnost tohoto jména. O tělesu se soudí, že se skládá téměř výhradně z pevného kamene, který je na rozdíl od jiných známých objektů Kuiperova pásu pokryt jen tenkým ledovým pláštěm.[5][14] Dalším důvodem návrhu jména bylo, že Haumea je také bohyní plodnostizrození, která má mnoho dětí. Ty vyrašily z různých částí jejího těla,[13][15] což odpovídá shluku ledových těles, který se pravděpodobně od mateřského tělesa odtrhl při nějaké dávné kolizi.[14] Astronomové se domnívají, že i oba známé měsíce se zrodily právě touto cestou,[14] a proto byly pojmenovány podle dvou z mýtických dcer Haumey, HiʻiakaNamaka.[5][15]

 Spory kolem objevu

K objevu Haumey se hlásí dva týmy. Kalifornský tým pod vedením Michaela Browna těleso objevil v prosinci 2004 na fotografiích pořízených 6. května téhož roku. 20. července 2005 publikovali na internetu abstrakt své zprávy pro konferenci konanou v září, na níž zamýšleli objev oficiálně oznámit.[16] Přibližně v téže době Haumeu nalezl také José-Luis Ortiz Moreno se svým týmem v Instituto de Astrofísica de Andalucía ve Španělsku, a to na snímcích pořízených již 7.–10. března 2003.[17] Ortiz o tom 27. července 2005 zaslal zprávu e-mailem do Minor Planet Center s tím, že objev byl učiněn 7. března 2003.[17]

Michael Brown se však brzy poté dozvěděl, že si někdo ze španělské observatoře přes internet prohlížel jejich soubory obsahující údaje o tom, kam byly namířeny jejich teleskopy. Tyto soubory obsahovaly dost informací k tomu, aby umožnily nalézt těleso na předobjevových snímcích z roku 2003. Soubory někdo prohlížel právě den před Ortizovým oznámením objevu a o dva dny později znovu. Ortiz později připustil, že to byl on, ovšem popřel jakýkoliv zlý úmysl. Argumentoval, že si pouze ověřoval, zda objevili nový objekt.[18]

Podle pravidel Mezinárodní astronomické unie je objevitelem planetky vždy ten, kdo první podá do Minor Planet Center zprávu s dostatkem pozičních údajů, které umožní určit její oběžnou dráhu. Při jejím pojmenovávání pak má přednost návrh objevitele. Ovšem v oznámení ze 17. září 2008, že Haumea byla uznána jako trpasličí planeta, není žádný objevitel zmíněn. Jako místo objevu je uvedena Observatoř Sierra Nevada,[4][19] ovšem španělský návrh pojmenovat těleso po iberské bohyni Ataecina nebyl přijat a těleso dostalo jméno podle návrhu kalifornského týmu.[17]

 Oběžná dráha

Oběžné dráhy Haumey (žlutá) a Pluta (červená) v porovnání s oběžnou dráhou Neptunu (šedá)

Haumea má oběžnou dráhu typickou pro klasické objekty Kuiperova pásu, s oběžnou dobou 282 pozemských let a sklonem oběžné dráhyrovině ekliptiky 28°. Perihéliem ve vzdálenosti 34,5 astronomických jednotek projde v září 2132.[20] Aféliem ve vzdálenosti 51,5 astronomických jednotek naposledy prošla začátkem roku 1992[21] a znovu se tak stane až v roce 2277. V současné době se tedy opět pomalu přibližuje ke Slunci a její vzdálenost od něj je přibližně 51 astronomických jednotek.[22][23]

Oběžná dráha Haumey zobrazená v rotující neinerciální vztažné soustavě vzhledem k Neptunu (modrá skvrna vpravo dole). Červená se mění v zelenou v místech, kde protíná ekliptiku. Oběžná dráha Uranu je zobrazená světle zeleně, Saturnu žlutě a Jupiteru růžově

Oběžná dráha Haumey má o něco výstřednější charakter než dráhy ostatních členů její rodiny. Důvodem je zřejmě slabá dráhová rezonance 12:7 s Neptunem, jejímž vlivem se mohla oběžná dráha Haumey v průběhu poslední miliardy let mírně pozměnit.[14][8] Může za to tzv. Kozaiův efekt, který způsobuje zvětšování výstřednosti oběžné dráhy na úkor jejího sklonu.[14][24]

Oběžná dráha Haumey je poměrně nestabilní a zejména v perihelu se dostává pod vliv Neptunu,[9] takže je možné, že těleso v daleké budoucnosti (až miliarda let) zamíří směrem do vnitřních částí sluneční soustavy.[25] Vzhledem k tomu, že jeho povrch je pokryt tenkou vrstvou ledu, změnilo by se v kometu desettisíckrát jasnější, než byla kometa Hale-Bopp.[25]

Haumea dosahuje zdánlivé hvězdné velikosti 17,5, a je tedy snadno pozorovatelná i velkým amatérským dalekohledem. Je třetím nejjasnějším objektem Kuiperova pásu po Plutu a Makemake.[1] Všechny planety a většina planetek se již od svého vznikuprotoplanetárním disku sluneční soustavy pohybují po dráhách ve společné rovině, a proto se i většina raných pokusů o nalezení vzdálených objektů soustředila na tu část oblohy, kam se tato společná rovina promítá, tj. ekliptiku.[26] Později však začali astronomové hledat i tělesa, která byla odkloněna na dráhy s větším sklonem, a také vzdálená tělesa s pomalejším středním denním pohybem.[27][28] Výsledkem těchto průzkumů oblohy byl mimo jiné i objev Haumey.

Fyzikální charakteristika

ZeměDysnomia(136199) ErisCharon(134340) Pluto(136472) Makemake(136108) Haumea(90377) Sedna(90482) Orcus(50000) Quaoar(20000) VarunaSoubor:EightTNOsCzech.png
Haumea v porovnání se Zemí a s dalšími transneptunickými tělesy Eris, Pluto, Makemake, Sedna, Orcus, Quaoar a Varuna. Podrobnosti se zobrazí po kliknutí na jednotlivá tělesa v obrázku

Měsíce obíhající kolem Haumey umožňují astronomům pomocí 3. Keplerova zákona vypočítat hmotnost celého systému. Výsledek výpočtu, 4,006 ± 0,04 × 1021 kg,[3] dosahuje 28 % hmotnosti systému PlutoCharon a 5 % hmotnosti Měsíce. Prakticky veškerá tato hmotnost je soustředěna přímo v mateřském tělese.

Jasnost Haumey vykazuje velké fluktuace v průběhu 4-hodinových period, což lze vysvětlit jedině stejně dlouhou dobou rotace tělesa. Jde nejen o nejrychlejší rotaci ze všech známých hydrostaticky rovnovážných těles ve sluneční soustavě, ale také o nejrychlejší rotaci ze všech známých těles s průměrem větším než 100 km.[1] Tato rychlá rotace tělesa je pravděpodobně důsledkem srážky s jiným tělesem, při níž vznikly měsíce Haumey a další tělesa její rodiny.[14][25]

Rozměry, tvar a složení

Velikost jakéhokoliv tělesa sluneční soustavy může být odvozena z jeho zdánlivé jasnosti, vzdálenosti a albeda. Tělesa se mohou pozemským pozorovatelům zdát jasná, buď protože jsou velká, nebo protože mají velmi odrazivý povrch. Pokud astronomové znají míru jejich odrazivosti (albedo), potom mohou zhruba odhadnout i jejich velikost. U většiny vzdálených těles není albedo známé, ovšem Haumea je dostatečně velká a jasná na to, aby bylo možné změřit její tepelné vyzařování, z čehož astronomové odvodili i hodnotu jejího albeda, a tedy i velikost.[2]

Tvar Haumey byl zjištěn z fotometrie (sledování jasnosti a jejích změn) po podrobné interpretaci světelné křivky.[29] Výpočty přesných rozměrů však komplikuje její rychlá rotace. Fyzikální zákony platné pro rotaci tvárných těles předpovídají, že tělesu jako Haumea stačí při této rychlosti otáčení k nabytí rovnovážného tvaru trojosého elipsoidu méně než 100 dní. Většina změn jasnosti Haumey pravděpodobně není způsobena místními rozdíly v albedu, ale tím, že pozorovatelům na Zemi se toto rotující těleso nastavuje k pohledu střídavě zboku a shora.[1]

Vypočítané rozměry Haumey jsou 1960 × 1518 × 996 km. Vlevo jsou znázorněné nejmenší a největší rovníkové siluety (1960 × 996 km a 1518 × 996 km), vpravo pak je pohled na pól (1960 × 1518 km)

Rotace a amplituda světelné křivky Haumey umožňují odvodit její složení. Pokud by Haumea měla nízkou hustotu (jako Pluto) se silným ledovým pláštěm pokrývajícím malé kamenné jádro, potom by ji rychlá rotace protáhla mnohem více, než jak naznačují změny v její jasnosti. Astronomové tedy došli k závěru, že hustota tělesa se pohybuje v rozmezí 2,6–3,3 g/cm³.[1] To by znamenalo, že Haumea se skládá (podobně jako mnoho jiných těles sluneční soustavy) z křemičitých minerálů jako olivín či pyroxen. Tato hornina je pokryta relativně tenkou vrstvou ledu. Silný ledový plášť, který je typičtější pro objekty Kuiperova pásu, mohl být odmrštěn při impaktu, který vytvořil všechna tělesa její rodiny.[14]

Čím je těleso nacházející se v hydrostatické rovnováze hustší, tím kulovější tvar musí mít s ohledem na danou periodu rotace, což rovněž umožňuje vymezit rozměry Haumey. Vzhledem k její přesně známé hmotnosti a rotaci a k odvozené hustotě lze dojít k závěru, že Haumea má podél své nejdelší osy průměr přibližně stejný jako Pluto, a mezi póly pak asi poloviční. Protože však zatím u tohoto tělesa nebyly pozorovány žádné zákryty, ať již hvězd nebo jeho vlastních měsíců, neexistují zatím (na rozdíl od Pluta) ani žádná přímá měření těchto rozměrů.

Astronomové sestavili několik modelů, z nichž vyplývají různé rozměry. První model, sestavený Rabinowitzem et al. krátce po objevu Haumey v roce 2005, vychází z pozorování světelné křivky viditelného spektra pozemními teleskopy. Výsledek měření závisí na tom, pod jakým úhlem vidíme osu rotace. Při úhlu 90° a uvažovaném albedu 0,73 by rozměry tělesa byly 1960 × 1518 × 996 km, přičemž nejkratší osa je současně osou rotace. Autoři studie pokládají za pravděpodobné, že osa rotace se kryje s rovinou oběžné dráhy satelitu Hiʻiaka, což by znamenalo, že tento úhel činí 86°, a skutečné rozměry Haumey jsou tedy velmi blízké uvedeným údajům. Pokud by však pól osy rotace byl orientován více směrem k Zemi, potom by tvar tělesa byl ještě protaženější. Kdyby současně bylo o něco nižší i albedo (0,6), pak při úhlu 47° by rozměry Haumey byly 2500 × 1080 × 860 km.[1]

Z jiné analýzy světelné křivky, kterou koncem roku 2006 zveřejnili Pedro Lacerda a David C. Hewitt z havajského Institute for Astronomy, vyšel průměr ekvivalentního kulatého tělesa 1450 km.[30] Na základě fotometrických pozorování infračerveného světlavlnové délce 70 mikrometrů, provedených pomocí Spitzerova vesmírného dalekohledu, byl zase určen průměr 1150 +250-100

 km a albedo 0,84 +0,1-0,2

.[2]

Tyto nezávislé odhady rozměrů se tedy pohybují kolem středního geometrického průměru 1400 km. To by znamenalo, že se jedná o třetí či čtvrté největší transneptunické těleso, jaké bylo dosud objeveno, hned po Eris, Plutu a snad také Makemake, větší než Sedna, Orcus či Quaoar.[31]

 Povrch

Kolísání světelné křivky Haumey zapříčiněné jejím tvarem ovlivňuje stejným způsobem všechny její barevné složky, ovšem Pedro Lacerda zaznamenal také jisté barevné odlišnosti, a to ve viditelném spektru i v oblasti blízké infračervenému spektru. Zdá se, že na povrchu tělesa je oblast, která se svou barvou a albedem liší od jeho zbytku. Haumea tedy může mít skvrnitý povrch podobně jako Pluto, i když ne tak znatelně.[32][33]

Roku 2005 dalekohledy KeckGemini získaly světelná spektra Haumey, která svědčila o přítomnosti krystalického ledu podobného tomu na povrchu Plutova měsíce Charon.[34] To je velmi překvapivé, neboť krystalický led se tvoří při teplotách převyšujících 110 K (-160°C), zatímco povrchová teplota Haumey je nižší než 50 K (-220 °C), při níž se tvoří amorfní led.[34] Navíc struktura krystalického ledu je při neustálém bombardování kosmickým zářenímslunečním větrem, kterému jsou povrchy transneptunických těles vystaveny, nestabilní.[34] Za těchto podmínek by se krystalický led měl přeměnit v amorfní do deseti milionů let,[35] ovšem transneptunické objekty se nalézají na svých drahách v chladných oblastech sluneční soustavy už miliardy let.[8] Na transneptunických tělesech, kde led obsahuje organické sloučeniny jako tholin (například Pluto), radiace také způsobí, že povrch zčervená a ztmavne. Proto lze ze spektra a barvy Haumey usoudit, že ona i ostatní členové její skupiny prošly událostí, která změnila jejich povrch a vytvořila na něm čerstvý led.[36]

Haumea je podobně jasná jako sníh a její albedo je v rozmezí 0,6–0,8, což odpovídá krystalickému ledu.[1] Jiná velká transneptunická tělesa, jako např. Eris, mají albedo zřejmě také tak vysoké nebo i vyšší.[37] Zdá se, že 66 až 80 % povrchu Haumey je z čistého krystalického vodního ledu, k jehož vysokému albedu snad přispívá také kyanovodík nebo jíly s obsahem fylosilikátů.[34] Přítomné mohou být také anorganické soli kyanovodíku, jako například kyanid měďnato-draselný.[34] Na rozdíl např. od tělesa Makemake[38] se ve spektru Haumey nenalézá žádné měřitelné množství methanu, což znamená, že methanový led zde netvoří více než 10 %. To by odpovídalo dočasnému oteplení způsobenému kolizí, které by podobné těkavé látky z povrchu odstranilo.[34]

Měsíce

Oběžné dráhy měsíců Hiʻiaka a Namaka

Roku 2005 Brownův tým na Keckově observatoři objevil, že kolem Haumey obíhají dva měsíce, (136108) Haumea I Hiʻiaka a (136108) Haumea II Namaka.[4][15]

Satelit Hiʻiaka, který tým původně neoficiálně přezdíval Rudolph (podle jednoho ze sobů Santa Clause[39]) byl objeven 26. ledna 2005.[40] Z obou měsíců je to ten větší, jasnější a od mateřského tělesa vzdálenější. Má průměr asi 310 km[41] a Haumeu oběhne ve vzdálenosti 50 tisíc km[42] po téměř kruhové dráze jednou za 49 dní.[41] Absorpční čáry v infračerveném spektru na vlnových délkách 1,5 a 2 mikrometry naznačují, že většina povrchu je pokryta téměř čistým krystalickým vodním ledem.[43] Neobvyklé spektrum spolu s podobnými absorpčními čarami ve spektru Haumey vedlo Browna s kolegy k závěru, že tento systém zřejmě nevznikl gravitačním zachycením menších těles, ale že měsíce jsou spíše fragmenty samotné Haumey.[8]

Namaka, menší a blíže obíhající satelit, byl objeven 30. června 2005 a zpočátku byl neoficiálně nazýván po dalším sobu Blitzen. Jeho hmotnost činí jednu desetinu hmotnosti satelitu Hiʻiaka a Haumeu oběhne po velmi eliptické dráze jednou za 18 dní[44] ve vzdálenosti 39 tisíc km.[42] Jeho oběh je větším měsícem gravitačně rušen. Podle údajů z roku 2008 je jeho sklon vůči dráze většího měsíce 13°.[44] Je překvapivé, že relativně velké výstřednosti drah obou měsíců a jejich vzájemný sklon nebyly zmenšeny jejich vzájemným slapovým působením. Zdá se, že vysvětlením by mohly být složité rezonanční vztahy jejich oběžných drah.[3]

 

Skupiny transneptunických těles
Rozložení skupin transneptunických těles

     rodina Haumey      jiná kubewana      plutina, Neptunovi trojáni a jiná rezonanční transneptunická tělesa      tělesa rozptýleného disku      tělesa skupiny kentaurů

 

V současné době jsou oběžné dráhy obou měsíců vůči Zemi orientovány téměř bočně, takže občas může dojít k zákrytu.[45] Pozorování takových přechodů by mohlo upřesnit informaci o rozměrech a tvaru Haumey i těchto satelitů, podobně jako se to podařilo koncem 80. let 20. století při pozorování Pluta a Charonu.[46] Změny jasnosti systému během zákrytů budou nepatrné, což klade poměrně vysoké nároky na kvalitu pozorovacího zařízení.[47] K zákrytu Hiʻiaky došlo naposledy roku 1999, tj. jen několik let před objevem Haumey, a další nastane až za přibližně 130 let.[48] Jiná situace je však u Namaky. Zatímco u pravidelně obíhajících měsíců jsou zákryty vzácné, díky vlivu, jaký má na oběh Namaky Hiʻiaka, bude nyní její dráha v příznivém úhlu po několik let.[44][47]

 Rodina Haumey

Haumea je největším členem rodiny těles, která se zřejmě vytvořila poté, co byl jejich větší předchůdce zničen srážkou s jiným tělesem.[14][25] Odhaduje se, že prvotní těleso bylo velké přibližně jako Pluto.[49] Jde o první skupinu těles identifikovanou mezi transneptunickými objekty a kromě Haumey a jejích měsíců zahrnuje následující planetky:

  • (24835) 1995 SM55 (odhadovaný průměr 700 km)
  • (19308) 1996 TO66 (500 km)
  • (55636) 2002 TX300 (600 km)
  • (120178) 2003 OP32 (700 km)
  • (145453) 2005 RR43 (700 km)[9]

Tato tělesa mají podobný charakter spektra blízko infračervené oblasti.[29] Z podobného spektra vyplývá podobné složení a z něj je zase možné usuzovat na stejný původ těchto těles.

Existence této skupiny naznačuje, že Haumea i její potomci mají původ v rozptýleném disku. I kdyby byla vzata v úvahu celá doba existence sluneční soustavy, byla by v dnešním velmi řídkém Kuiperově pásu pravděpodobnost podobné kolize 0,1 procenta.[50] Skupina se nemohla vytvořit v Kuiperově pásu ani v dobách, kdy byl mnohem hustší, protože by ji zase svou gravitací roztrhal Neptun v průběhu své migrace na dnešní oběžnou dráhu. Tato dávná migrace Neptunu je zřejmě také důvodem, proč je dnes v Kuiperově pásu tak málo těles.[50] Proto se zdá pravděpodobné, že skupina pochází z dynamického rozptýleného disku, kde je možnost podobné srážky daleko vyšší.[50]

Skupina je dnes již poměrně rozptýlená, a dojít k tomuto stavu muselo trvat miliardy let. Kolize, která ji vytvořila, se tedy odehrála již někdy v rané historii sluneční soustavy.[9] Impakt však nemusel být příliš silný, protože v této oblasti sluneční soustavy i mírná kolize vede k velkým změnám drah těles.[29]

 

 

 

 

 

 
(90377) Sedna
 
 

 

původ Wikipedie

Sedna PRC2004-14d.jpg

Předběžné označení 2003 VB12
Katalogové číslo 90377
Název Sedna
Objevena
Datum 4. listopadu 2003
Místo Observatoř Palomar
Objevitel M. E. Brown, C. Trujillo, D. L. Rabinowitz
Elementy dráhy
(
Ekvinokcium J2000,0)
Epocha 2006-09-22.0 00:00:00,0 UTC
2454000,5 JD
Velká poloosa 488,1999 AU
73 033 662 780 km
Excentricita 0,8442
Perihel 76,0761  AU
11 380 829 010 km
Afel 900,3236  AU
134 686 496 600 km
Perioda (oběžná doba) 10 787,1 roku
3 940 000 dne
Střední denní pohyb 0,000 091°/den
Sklon dráhy k ekliptice 11,9296°
Délka vzestupného uzlu 144,4360°
Argument šířky perihelu 311,5589°
Střední anomálie 357,6663°
Průchod perihelem 2076-08-25 14:55:57 UTC
2479541,1222 JD
Rotace tělesa
Perioda rotace 10,273 h
0,4280 dne
Severní pól α=?
δ=?
Sklon osy k rovině dráhy  ?°
Fyzikální vlastnosti
Absolutní hvězdná velikost 1,58
Odhadovaný průměr 1180 – 1800 km
Albedo >0,2 ?
Hmotnost (1,7 – 6,1)×1021 kg
Střední hustota ~ 2,0 ? g/cm3
Gravitační parametr 110 – 410 km3/s2
Zrychlení na povrchu 0,33 – 0,50 m/s2
0,033 – 0,051g
Úniková rychlost 620 – 950 m/s
Teplota do 23 K
Spektrální třída  ?

(90377) Sedna je velké transneptunické těleso (TNO), jehož průměr může dosahovat až dvou třetin průměru trpasličí planety Pluto a pohybující se Sluneční soustavou po velmi výstředné dráze.

 

 Původ jména

Těleso jméno dostalo po inuitské bohyni Sedně, která vládla všem mořím a oceánům a jejich obyvatelům, např. tuleňům, a která žila v temnotách inuitského podsvětí.

 Historie

Těleso objevili 14. listopadu 2003 astronomové Mike Brown, Chad Trujillo a David Rabinowitz na Observatoři Palomar poblíže města San Diego v Kalifornii (USA) v průběhu přehlídky nebe dalekohledem Samuela Oschina, tj. Schmidtovou komorou o průměru 1,22 m, vybavenou 160megapixelovou kamerou Yale-Palomar Quest. V té době se objekt nacházel v tehdy rekordní vzdálenosti přibližně 90 AU od Slunce (později byl tento rekord překonán; v současné době jej drží planetka (136199) Eris, která byla objevena ve vzdálenosti 97 AU). Dodatečně byla Sedna objevena též na předobjevových snímcích, pořízených již 25. září 1990.

Objevitelé velmi brzy zjistili na základě jejího velmi pomalého pohybu, že se jedná o mimořádně zajímavé těleso, nacházející se ve velké vzdálenosti od Slunce. Protože zdánlivá hvězdná velikost byla přesto značná, dalo se usuzovat, že i jeho velikost bude mimořádná. Proto se o něm začalo uvažovat jako o desáté planetě Sluneční soustavy, přestože to naprostá většina astronomů okamžitě odmítla. Přesto v souvislosti s její výjimečností oznámili objevitelé na tiskové konferenci, uspořádané 15. března 2004, že jí navrhli jméno „Sedna“, čímž porušili pravidla Mezinárodní astronomické unie (IAU), která povolují pojmenování planetek teprve poté, co je jim přiděleno definitivní označení (katalogové číslo). K definitivnímu schválení jména pak došlo teprve v srpnu 2004.

 Popis planetky

 Dráha planetky

Dráha Sedny v porovnání s drahami vnějších planet Sluneční soustavy a Oortově oblaku

Sedna se pohybuje po velmi výstředné eliptické dráze (viz tabulka vpravo), jejíž afel dosahuje hodnoty blížící se 1000 AU. V současné době se ještě přibližuje ke Slunci, přičemž perihelu má dosáhnout v roce 2076, kdy bude od Slunce vzdálena jen 76 AU, což však znamená přibližně 1,5krát dále, než sahá dráha Pluta.

Studie H. Levinsona a A.Morbidelliho z hvězdárny Observatoire de la Côte d'Azur (OCA) v Nice (Francie) vysvětluje mimořádnou dráhu Sedny působením blízkého průletu (~800 AU) cizí hvězdy v průběhu prvních 100 milionů let existence naší Sluneční soustavy. Mohlo se pravděpodobně jednat o hvězdu, která vznikla souběžně se Sluncem z téže původní plynné mlhoviny. Podle jiného, méně pravděpodobného scénáře, mohla sama Sedna vzniknout jako planeta obíhající kolem hnědého trpaslíka, o hmotnosti přibližně dvacetiny hmotnosti Slunce, který Sednu ztratil během svého průletu Sluneční soustavou.

Jiné možné vysvětlení, navrhované S. Gomezem a jeho spolupracovníky, předpokládá existenci hypotetické velké planety, obíhající ve vnitřní části Oortova oblaku. Počítačové simulace ukázaly, že taková planeta o hmotnosti Jupiteru, obíhající ve vzdálenosti 5000 AU, či velikosti Neptunu ve vzdálenosti 2000 AU nebo Země ve vzdálenosti 1000 AU, by mohla vyslat Sednu na její současnou dráhu. Problém této teorie však spočívá v tom, že na okraji vnikající Sluneční soustavy je původní prachoplynový disk příliš řídký, takže formování tak velkých planet v této oblasti je velmi nepravděpodobné, případně by trvalo velmi dlouho (asi miliardu let).

 Zařazení planetky

Umělecká představa Sedny

Podle názoru jejích objevitelů je Sedna prvním pozorovaným objektem Oortova oblaku, neboť její dráha sahá příliš daleko, aby mohla být považována za příslušníka Kuiperova pásu (KBO). Protože je však na druhou stranu podstatně blíže, než se očekávalo pro objekty Oortova oblaku a rovina její dráhy se příliš neliší od roviny ekliptiky (sklon činí pouze přibližně 11°) a tedy ani od rovin, v nichž obíhají KBO, zavedli kompromisní kategorii těles vnitřního Oortova oblaku, který považují za plochý diskovitý útvar, jímž přechází Kuiperův pás plynule do kulovité hlavní části Oortova oblaku.

Naproti tomu jiní astronomové tvrdí, že sklon a rozměry eliptické dráhy Sedny jsou dostatečným důkazem toho, že se jedná o KBO a že naopak je nutno revidovat naše představy o tom, do jaké vzdálenosti oblast Kuiperova pásu ve skutečnosti sahá.

Tato diskuse se však netýká otázek, jak se Sedna dostala na svoji současnou dráhu.

 Fyzikální vlastnosti

Z pozorování, uskutečněných krátce po jejím objevu, které neodhalily významné periodické změny v jeho jasnosti, se usuzovalo, že má velmi dlouhou dobu rotace kolem osy, v rozmezí 20 až 50 dní, což vedlo k domněnce, že má menšího průvodce (měsíc), jehož slapové působení zbrzdilo původní rotaci tohoto tělesa. Při sledování Sedny Hubbleovým vesmírným dalekohledem (HST) v březnu 2004 však žádný měsíček nalezen nebyl. Pozdější zkoumání Sedny šestimetrovým dalekohledem MMT observatoře na Mt. Hopkins v Arizoně však prokázala, že rotační perioda je mnohem kratší, přibližně desetihodinová, což je obvyklé u samostatných těles této velikosti. Současně se tím prokázalo, že povrch Sedny má málo albedových útvarů, což naznačuje, že v průběhu vývoje v minulosti nebyl vystaven intenzivnímu bombardování, které by odkrylo světlejší podložní vrstvy, a že se tedy pravděpodobně nikdy nepohyboval ve vnitřních částech Sluneční soustavy.

Oběžná dráha planet a planetky Sedna

Neexistence průvodce Sedny také znemožňuje přesné stanovení hmotnosti tohoto objektu. Není ani známo její albedo a proto i výpočet jejího průměru je značně nejistý. Z toho, že ji nebylo možno pozorovat v infračervené oblasti spektra družicovou observatoří Spitzer organizace NASA, vedlo ke zjištění, že její průměr nemůže být větší, než 75 % průměru Pluta. To naopak znamená, že ve viditelném světle má značnou odrazivost a že její albedo tedy musí být větší než 20 %. Ze všech těchto úvah vyplývá, že průměr Sedny se může pohybovat ve značně širokém rozmezí od 1180 do 1800 km. V současné době je tedy čtvrtým největším tělesem TNO po 2003 UB313, Plutu a (136472) Makemake.

Vzhledem k velké vzdálenosti od Slunce rovnovážná teplota povrchu Sedny nemůže být nikdy vyšší, než 23 K (tj. −240 °C). Proto nemůže mít žádnou atmosféru, neboť žádné plyny s výjimkou vodíku a hélia (které si vzhledem k slabé gravitaci neudrží) nemohou při těchto teplotách existovat v plynném stavu.

 Chemické vlastnosti

Spektroskopické zkoumání Sedny ukázalo, že povrch tohoto tělesa má výrazně načervenalou barvu. Na základě toho se usuzuje, že na rozdíl od Pluta a jeho měsíce Charonu není její povrch pokryt dusíkovým, vodním a metanovým sněhem. Načervenalou barvu připisuje C. Trujillo tholinu, složitým vysokomolekulárním organickým sloučeninám, vznikajícím působením radiace na jednoduché uhlovodíky, a vyskytujícím se např. na povrchu planetky (5145) Pholus či v atmosféře Saturnova měsíce Titanu. Pozorovaným spektrům Sedny nejlépe vyhovuje směs tvořená 24 % tholinu, 7 % amorfního uhlíku, 26 % metanolového ledu a 33 % metanu.

 

 

 

 

 

 

 

 

(50000) Quaoar
Quaoar PRC2002-17e.jpg
Quaoar na snímku Hubblova vesmírného dalekohledu
Předběžné označení 2002 LM60[1]
Katalogové číslo 50000[1]
Název Quaoar
Objevena
Datum 4. června 2002[1]
Místo Palomar[1]
Objevitel Chad Trujillo,
Michael E. Brown
[1]
Elementy dráhy
(
Ekvinokcium J2000,0)
Epocha 2004-10-22  UTC
2453300,5 JD
Velká poloosa 43,405 AU
6 493 296 000 km
Excentricita 0,034
Perihel 41,914  AU
6 270 316 000 km
Afel 44,896  AU
6 716 275 000 km
Perioda (oběžná doba) 285,97 roku
104 449,918 dne
Střední denní pohyb 0,0034°/den
Sklon dráhy k ekliptice 7,983°
Délka vzestupného uzlu 188,791°
Argument šířky perihelu 154,850°
Střední anomálie 273,737°
Průchod perihelem 2068-06-21,41702916  UTC
2476553,9170 JD
Rotace tělesa
Perioda rotace 17,6788 h
Severní pól α=?
δ=?
Sklon osy k rovině dráhy  ?°
Fyzikální vlastnosti
Absolutní hvězdná velikost 2,6
Odhadovaný průměr 1260 ± 190 km[2]
844+207−190

 km[3]

Albedo 0,088+0,021−0,012

[2]
0,1986+0,13−0,07

					
[3]
Hmotnost 1,0 – 2,6×1021 kg
Střední hustota 2,0? g/cm3
Gravitační parametr  ? km3/s2
Zrychlení na povrchu 0,276–0,376 m/s2
?g
Úniková rychlost 523–712 m/s
Teplota ~43 K
Spektrální třída B-V=0,94, V-R=0,65

 

(50000) Quaoar je transneptunické těleso obíhající kolem SlunceKuiperově pásu. Objeveno bylo 4. června 2002 astronomy Chadem Trujillem a Michaelem Brownem na fotografiích pořízených na Observatoři Palomar. Pojmenováno bylo po božstvu spojovaném v mytologii indiánského kmene Tongva se stvořením světa.[4] Těleso je kandidátem na zařazení mezi tzv. trpasličí planety. Podle Trujillova a Brownova měření má průměr 1 260 ± 190 km, ovšem novější měření naznačují, že je možná až o 400 km menší. Kolem Slunce obíhá po kruhové, vůči rovině ekliptiky jen mírně nakloněné dráze ve vzdálenosti asi 6 miliard km. Jeho oběžná doba je 287 let. Těleso je tvořeno směsí kamení a vodního ledu s malou příměsí metanu a etanu.[5] Obíhá kolem něj malý satelit, jehož průměr astronomové odhadují přibližně na 100 km.[6]

 

 

 

 Objev

Transneptunické těleso Quaoar objevili američtí astronomové Chad Trujillo a Michael Brown 4. června 2002 v Kalifornském technologickém institutu na fotografiích pořízených teleskopem Samuela Oschina na Observatoři Palomar a svůj objev oznámili 7. října 2002 na setkání Americké astronomické společnosti. Těleso hvězdné velikosti 18,5 vyfotografovali v souhvězdí Hadonoše. Nejstarší předobjevový snímek, pořízený rovněž palomarskou observatoří, však pochází již z 25. května 1954.

Tento objev je do jisté míry výsledkem závodu o nalezení nového objektu ve Sluneční soustavě velikosti Pluta. Roku 2000 mu předcházel objev tělesa Varuna a po něm následovala celá řada dalších významných objevů, až se nakonec v říjnu 2003 podařilo pořídit snímky tělesa většího než Pluto, trpasličí planety Eris.

 Jméno

Těleso, které nejprve obdrželo předběžné označení 2002 LM60, bylo pojmenováno v souladu s pravidly Mezinárodní astronomické unie, která stanovují, že transneptunická tělesa mají nést jména božstev spojovaných s mýty o stvoření. „Quaoar“ ([qʷɑoɑr] IPA) je jméno boha stvořitele pocházejícího z mytologie indiánského kmene Tongva, který sídlil v okolí dnešního Los Angeles, kde bylo těleso objeveno.

S ohledem na svůj význam a velikost dostal Quaoar kulaté katalogové číslo 50000.

 Velikost

ZeměDysnomia(136199) ErisCharonPluto(136472) Makemake(136108) Haumea(90377) Sedna(90482) Orcus(50000) Quaoar(20000) VarunaSoubor:EightTNOsCzech.png
Quaoar v porovnání s tělesy Eris, Pluto, (136472) 2005 FY9, Haumea, Sedna, Orcus, Varuna a se Zemí.

Astronomové Chad Trujillo a Michael Brown změřili průměr Quaoaru na 1260 ± 190 km[2], což ho v době objevu roku 2002 činilo největším nově nalezeným tělesem Sluneční soustavy od objevu Pluta. Tento rozměr odpovídá asi jedné desetině průměru Země a jedné třetině průměru Měsíce, dost na to, aby (pokud by se měření potvrdilo) těleso mohlo být řazeno mezi trpasličí planety. Později následovaly objevy ještě větších transneptunických těles Eris, Sedna, (136108) Haumea a (136472) Makemake. Větší rozměr má pravděpodobně i plutino Orcus.

Quaoar byl prvním transneptunickým tělesem, které bylo změřeno, díky fotografiím Hubblova vesmírného dalekohledu (HST), přímo. Vzhledem ke své vzdálenosti od Země se pohybuje na hranici rozlišení HST (40 úhlových milivteřin), takže jeho obraz byl „rozmazaný“ na několika pixelech. Novou metodou pečlivého srovnání tohoto obrazu s obrazy hvězd na pozadí (tzv. bodová rozptylová funkce) byli Brown a Trujillo schopni odhadnout velikost disku, který by na snímcích dával podobný rozostřený obraz. Tuto metodu později také uplatnili při měření velikosti Eridy.

Jejich odhady však příliš nesouhlasí s infračervenými měřeními, získanými roku 2007 pomocí Spitzerova vesmírného dalekohledu, která ukazují, že Quaoar má mnohem větší odrazivost povrchu (0,19), a tím pádem mnohem menší poloměr (844,4 +206,7-189,6

 km).[3]

 Oběžná dráha

Oběžné dráhy Quaoaru, Pluta a Neptunu – pohled rovnoběžný s rovinou ekliptiky
Oběžné dráhy Quaoaru (modrá), Pluta (červená) a Neptunu (šedá) – pohled kolmý na rovinu ekliptiky

Quaoar obíhá ve vzdálenosti asi 6 miliard kilometrů od Slunce a jeho oběžná doba je 287 let.

Oběžná dráha má téměř kruhový tvar a vůči rovině ekliptiky je jen mírně nakloněná (~8°), což je typické pro tzv. klasické objekty Kuiperova pásu, známé též jako kubewana, ale výjimečné mezi objekty Kuiperova pásu této velikosti. Oběžné dráhy Varuny, Haumey i Makemake jsou mnohem excentričtější a mají mnohem větší sklon.

Na obrázku vpravo lze porovnat téměř kruhovou dráhu Quaoaru s velmi excentrickou dráhou Pluta. Kružnice zobrazují pozice těchto dvou těles z dubna 2006, jejich relativní velikosti, perihélia (q), afélia (Q) a data průchodů těmito body.

Na rozdíl od Pluta, které je v rezonanci 2:3 s planetou Neptun, není Quaoar vzhledem ke své vzdálenosti (43 AU od Slunce) a téměř kruhové dráze při svém oběhu Neptunem nijak významně rušen. Pohled na jejich oběžné dráhy rovnoběžný s rovinou ekliptiky ukazuje jejich sklon. Protože afélium Pluta je za (a pod) oběžnou dráhou Quaoaru, v některých obdobích se dostává ke Slunci blíže a v jiných je od něj zase dále než Quaoar.

Roku 2008 je Quaoar pouze 13,9 AU[7] od Pluta, což je na poměry v Kuiperově pásu velmi blízko a činí ho nejbližším velkým tělesem systému Pluto-Charon.

 Fyzikální charakteristika

Astronomové se domnívají, že Quaoar se skládá, podobně jako jiné objekty Kuiperova pásu, ze směsi kamení a ledu. Velmi nízká míra odrazivosti jeho povrchu (odhadovaná na pouhých 0,1, což je ale stále více, než má Varuna – 0,04) však naznačuje, že ze svrchních vrstev led vymizel. Povrch je načervenalý, což znamená, že v pásmu červeného a téměř infračerveného záření je odrazivější než v modrém. Totéž platí například i o tělesech Varuna a Ixion. Větší objekty Kuiperova pásu často bývají mnohem jasnější, protože jsou více pokryty ledem.

Fotografe z Hubblova vesmírného dalekohledu použitá k měření rozměru Quaoaru

Roku 2004 vědci ke svému překvapení na Quaoaru nalezli známky krystalického ledu, což naznačuje, že teploty zde někdy v průběhu posledních 10 milionů let stouply na určitou dobu nejméně na −160 °C (110 K).[8] Současně se objevily spekulace, co zapříčinilo zahřátí Quaoaru z jeho přirozené teploty −220 °C (55 K). Někteří vědci přišli s názorem, že vzestup teploty mohlo způsobit bombardování meteority, ale nejčastěji diskutovaná teorie spekuluje, že by se na tělese mohl vyskytovat kryovulkanismus, poháněný rozpadem radioaktivních prvkůjádře Quaoaru.[8]. Od té doby (roku 2006) byl krystalický vodní led nalezen také na tělese (2003) EL61, ovšem ve větším množství, což je asi důvod, proč má toto těleso tak vysokou odrazivost (0,7).[9]

Přesnější pozorování Quaoaru v pásmu blízkém infračervenému záření z roku 2007 naznačují přítomnost malého množství (5 %) metanu a etanupevném skupenství.[10] Metan je vzhledem ke svému bodu varu 112 K při průměrných teplotách, jaké panují na povrchu Quaoaru, v pevném skupenství nestálý, na rozdíl od vodního ledu nebo etanu (s bodem varu 185 K). Vypracované modely i provedená pozorování ukazují, že pouze několik větších těles, jako Pluto, Eris nebo (2005) FY9 si může udržet nestálé druhy ledu, zatímco převážná většina transneptunických těles je ztratila. Quaoar se svým malým množstvím metanu patrně v tomto ohledu patří někam mezi tyto dvě kategorie.[10]

 Satelit

22. února 2007 byl v oběžníku Mezinárodní astronomické unie č. 8812 ohlášen objev Quaoarova satelitu.[11] Oběžná dráha satelitu není známa. Satelit byl nalezen 0,35 úhlových vteřin od Quaoaru, rozdíl hvězdných velikostí obou těles činil 5,6.[6] Z toho lze odvodit, že pokud je odrazivost povrchu podobná jako u hlavního tělesa, má pravděpodobně průměr okolo 100 km

 

 

 

Webová stránka byla vytvořena pomocí on-line webgenerátoru WebSnadno.cz